Back to Catalog

Use Kernel PCA To Find Why Are You Poor

BeginnerGuided Project

Learn to identify patterns in data using Python programming and Data Science. Explore Kernel Principal Component Analysis by uncovering non linear trends, and draw valuable insights from your datasets. It's a powerful extension of traditional PCA that can unravel complex patterns and structures in non-linear data. Maping the data into a higher-dimensional feature space, where non-linear relationships become linear allows KPCA to capture the intricate structures and similarities in the data that may otherwise remain hidden.

4.7 (45 Reviews)

Language

  • English

Topic

  • Data Science

Enrollment Count

  • 182

Skills You Will Learn

  • Data Science, Python

Offered By

  • IBMSkillsNetwork

Estimated Effort

  • 30 minutes

Platform

  • SkillsNetwork

Last Update

  • May 10, 2025
About this Guided Project
Rumor has it that the ultra-wealthy community consists of either investment bankers or entrepreneurs in the tech industry that dropped out of college. Is that stereotype really true? Ever wonder if the top billionaires in the world share anything in common? Although, we can't say with certainty what it takes to be one, we do have a way to determine if any patterns exist among the richest people in the world. 

In this guided Project, you will explore Kernel Principal Component Analysis (Kernel PCA) - an extension of principal component analysis (PCA) - to extract key feature patterns in the dataset, which is usually of higher dimension. In addition to analyzing billionaires around the globe, we will also use this unsupervised learning technique to denoise images. 

Who Should Participate?

This guided project is ideal for data scientists, machine learning practitioners, and enthusiasts eager to explore non-linear dimensionality reduction techniques. Participants should have a basic understanding of linear algebra and programming fundamentals. While some familiarity with traditional KPCA is beneficial, it is not a prerequisite, as we will cover the necessary theoretical foundations and practical implementations.

Instructors

Joseph Santarcangelo

Senior Data Scientist at IBM

Joseph has a Ph.D. in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.

Read more

Artem Arutyunov

Data Scientist

Hey, Artem here! I am excited about answering new challenges with data science, machine learning and especially Reinforcement Learning. Love helping people to learn, and learn myself. Studying Math and Stats at University of Toronto, hit me up if you are from there as well.

Read more