Back to Catalog

Deep Learning with TensorFlow and Keras

Learn on

edX logo
BeginnerCourse

Learn TensorFlow and Deep Learning concepts with this online course. Earn a skill badge upon successful completion.

Language

  • English

Topic

  • Deep Learning

Skills You Will Learn

  • Reinforcement Learning, Transformers, Convolutional Networks, Tensoflow, Keras

Offered By

  • IBMSkillsNetwork

Estimated Effort

  • 5 wks 2 – 4 h

Platform

  • edX

Last Update

  • May 30, 2025
About this Course
Please Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in this course. Enroll to learn more, complete the course and claim your badge!


Traditional neural networks rely on shallow nets, composed of one input, one hidden layer and one output layer. Deep-learning networks are distinguished from these ordinary neural networks having more hidden layers, or so-called more depth. These kind of nets are capable of discovering hidden structures withinunlabeled and unstructured data (i.e. images, sound, and text), which consitutes the vast majority of data in the world.


TensorFlow is one of the best libraries to implement deep learning. TensorFlow is a software library for numerical computation of mathematical expressional, using data flow graphs. Nodes in the graph represent mathematical operations, while the edges represent the multidimensional data arrays (tensors) that flow between them. It was created by Google and tailored for Machine Learning. In fact, it is being widely used to develop solutions with Deep Learning.


In this TensorFlow course, you will learn the basic concepts of TensorFlow, the main functions, operations and the execution pipeline. Starting with a simple “Hello Word” example, throughout the course you will be able to see how TensorFlow can be used in curve fitting, regression, classification and minimization of error functions.


This concept is then explored in the Deep Learning world. You will learn how to apply TensorFlow for backpropagation to tune the weights and biases while the Neural Networks are being trained. Finally, the course covers different types of Deep Architectures, such as Convolutional Networks, Recurrent Networks and Autoencoders.

Instructors

Rav Ahuja

Global Program Director, IBM Skills Network

Rav Ahuja is a Global Program Director at IBM. He leads growth strategy, curriculum creation, and partner programs for the IBM Skills Network. Rav co-founded Cognitive Class, an IBM led initiative to democratize skills for in demand technologies. He is based out of the IBM Canada Lab in Toronto and specializes in instructional solutions for AI, Data, Software Engineering and Cloud. Rav presents at events worldwide and has authored numerous papers, articles, books and courses on subjects in managing and analyzing data. Rav holds B. Eng. from McGill University and MBA from University of Western Ontario.

Read more